How to Conduct a Social Media Sentiment Analysis

A Practitioner’s Guide to Natural Language Processing Part I Processing & Understanding Text by Dipanjan DJ Sarkar

semantic analysis of text

This suggests that while the refinement process significantly enhances the model’s accuracy, its contribution is subtle, enhancing the final stages of the model’s predictions by refining and fine-tuning the representations. A deep learning model is built where the architecture is like the sentiment classification, which is an LSTM-GRU model shown in Fig. Instead of a 3 neurons-dense layer as the output layer, a 5 neurons-dense layer to classify the 5 emotions. The model had been trained using 20 epochs, and the history of the accuracy and loss had been plotted and shown in Fig.

semantic analysis of text

Its dashboard has a clean interface, with a sidebar displaying filters for selecting the samples used for sentiment analysis. Next to the sidebar is a section for visualization where you can use colorful charts and reports for monitoring sentiments by topic or duration and summarize them in a keyword cloud. Furthermore, many details in the research process have much room for further improvement. ChatGPT App Additional features, such as indices for contextual semantic characteristics and the number of argument structure nestifications, could be included in the analysis. Moreover, the current study does not involve the refinement of semantic analysis tools since the modification and improvement of language models require high technique level and a massive quantity of training materials.

Lexicon-based danmaku sentiment analysis

In the end, the GRU model converged to the solution faster with no large iterations to arrive at those optimal values. In summary, the GRU model for the Amharic sentiment dataset achieved 88.99%, 90.61%, 89.67% accuracy, precision, and recall, respectively. From Tables 4 and 5, it is observed that the proposed Bi-LSTM model for identifying sentiments and offensive language, performs better for Tamil-English dataset with higher accuracy of 62% and 73% respectively.

semantic analysis of text

Over time, scientists developed numerous complex methods to understand the relations in the text datasets, including text network analysis. In conclusion, drawing on the approaches of CDA and sentiment analysis, this study closely examines the use of non-quotation “stability” in relation to China by The New York Times between 1980 and 2020. However, the US government was vigilant about China’s growing economic and military power, not to mention its political presence in the world. 1, Period 1 is the only period in which the sentiment value is positive (0.09), which may be explained by the relatively harmonious China-US relations that began in 1979 when the two nations agreed to recognize each other. In Period 2, the sentiment value (−0.19) fell to an all-time low, as social problems and human rights issues began to garner a great deal of attention after the 1989 “Tiananmen Square incident”. The sentiment value for Period 3 (−0.06) is a bit greater than that of the previous period (−0.04), although it is still negative, and the score for Period 4 (−0.02) also increases.

Methods for sentiment analysis

This helps you stay informed about trending topics, competitors and complementary products. By analyzing the sentiment behind user interactions, you can fine-tune your messaging strategy to better align with your audience’s values and preferences. This can lead to more effective marketing campaigns and a stronger brand presence.

It considers how frequently words co-occur with each other in the entire dataset rather than just in the local context of individual words. The Distributional Hypothesis posits that words with similar meanings tend to occur in similar contexts. This concept forms the basis for many word embedding models, as they aim to capture ChatGPT semantic relationships by analyzing patterns of word co-occurrence. A sliding context window is applied to the text, and for each target word, the surrounding words within the window are considered as context words. The word embedding model is trained to predict a target word based on its context words or vice versa.

The GRU-CNN model registered the second-highest accuracy value, 82.74, with nearly 1.2% boosted accuracy. Bi-LSTM, the bi-directional version of LSTM, semantic analysis of text was applied to detect sentiment polarity in47,48,49. A bi-directional LSTM is constructed of a forward LSTM layer and a backward LSTM layer.

semantic analysis of text

The embedded words were used as an input for bidirectional LSTM model and added a BI-LSTM layer using Keras. TensorFlow’s Keras now has a new bidirectional class that can be used to construct bidirectional-LSTM and then fit the model to our data. Experimental research design is a scientific method of investigation in which one or more independent variables are altered and applied to one or more dependent variables to determine their impact on the latter. In experimental research, experimental setup such as determining how many trials to run and which parameters, weights, methodologies, and datasets to employ. As someone who is used to working with English texts, I found it difficult in the first place to translate preprocessing steps routinely used for English texts to Arabic. Luckily, I later came across a Github repository with the code for cleaning texts in Arabic.

Discover content

The difficulty of capturing semantics and concepts of the language from words proposes challenges to the text processing tasks. A document can not be processed in its raw format, and hence it has to be transformed into a machine-understandable representation27. Selecting the convenient representation scheme suits the application is a substantial step28. The fundamental methodologies used to represent text data as vectors are Vector Space Model (VSM) and neural network-based representation. Text components are represented by numerical vectors which may represent a character, word, paragraph, or the whole document.

These tools help resolve customer problems in minimal time, thereby increasing customer satisfaction. All factors considered, Uber uses semantic analysis to analyze and address customer support tickets submitted by riders on the Uber platform. The analysis can segregate tickets based on their content, such as map data-related issues, and deliver them to the respective teams to handle. The platform allows Uber to streamline and optimize the map data triggering the ticket. The semantic analysis uses two distinct techniques to obtain information from text or corpus of data. The first technique refers to text classification, while the second relates to text extractor.

A hybrid transformer and attention based recurrent neural network for robust and interpretable sentiment analysis of tweets

The outputs from the two LSTM layers are then merged using a variety of methods, including average, sum, multiplication, and concatenation. Bi-LSTM trains two separate LSTMs in different directions (one for forward and the other for backward) on the input pattern, then merges the results28,31. Once the learning model has been developed using the training data, it must be tested with previously unknown data. This data is known as test data, and it is used to assess the effectiveness of the algorithm as well as to alter or optimize it for better outcomes. It is the subset of training dataset that is used to evaluate a final model accurately. The test dataset is used after determining the bias value and weight of the model.

While businesses should obviously monitor their mentions, sentiment analysis digs into the positive, negative and neutral emotions surrounding those mentions. Python is a high-level programming language that supports dynamic semantics, object-oriented programming, and interpreter functionality. Deep learning approaches for sentiment analysis are being tested in the Jupyter Notebook editor using Python programming. You can foun additiona information about ai customer service and artificial intelligence and NLP. One can train machines to make near-accurate predictions by providing text samples as input to semantically-enhanced ML algorithms. Machine learning-based semantic analysis involves sub-tasks such as relationship extraction and word sense disambiguation.

Chinese-RoBerta-WWM-EXT, Chinese-BERT-WWM-EXT and XLNet are used as pre-trained models with dropout rate of 0.1, hidden size of 768, number of hidden layers of 12, max Length of 80. BiLSTM model is used for sentiment text classification with dropout rate of 0.5, hidden size of 64, batch size of 64, and epoch of 20. The model is trained using Adam optimizer with a learning rate of 1e−5 and weight decay of 0.01. The models utilized in this study were constructed using various algorithms, incorporating the optimal parameters for each algorithm. The evaluation of model performance was based on several metrics, including accuracy, precision, recall, and F1. Accuracy, precision, recall, and F1 are commonly employed to assess the performance of classification models.

Semantic analysis helps fine-tune the search engine optimization (SEO) strategy by allowing companies to analyze and decode users’ searches. The approach helps deliver optimized and suitable content to the users, thereby boosting traffic and improving result relevance. Subword embeddings, such as FastText, represent words as combinations of subword units, providing more flexibility and handling rare or out-of-vocabulary words. The objective function is optimized using gradient descent or other optimization algorithms. The goal is to adjust the word vectors and biases to minimize the squared difference between the predicted and actual logarithmic co-occurrence probabilities. Skip-gram works well with handling vast amounts of text data and is found to represent rare words well.

(PDF) Subjectivity and sentiment analysis: An overview of the current state of the area and envisaged developments – ResearchGate

(PDF) Subjectivity and sentiment analysis: An overview of the current state of the area and envisaged developments.

Posted: Tue, 22 Oct 2024 12:36:05 GMT [source]

Python’s NLP libraries aim to make text preprocessing as effortless as possible, so that applications can accurately convert free text sentences into a structured feature that can be used by a machine learning (ML) or deep learning (DL) pipeline. Combined with a user-friendly API, the latest algorithms and NLP models can be implemented quickly and easily, so that applications can continue to grow and improve. The standard CNN structure is composed of a convolutional layer and a pooling layer, followed by a fully-connected layer. Some studies122,123,124,125,126,127 utilized standard CNN to construct classification models, and combined other features such as LIWC, TF-IDF, BOW, and POS.

  • Recently, it has added more features and capabilities for custom sentiment analysis, enhanced text Analytics for the health industry, named entity recognition (NER), personal identifiable information (PII) detection,and more.
  • It allows you to categorize and quantify customer feedback from a wide range of data sources including reviews, surveys, and support tickets.
  • Besides, there are 65 and 43 sentences are physical and non-physical sexual harassment, respectively.
  • From the basic necessities of home and rent to the complexities of the economy and politics, these words refer to some of the challenges and opportunities individuals and institutions face.
  • Embedding vectors of semantically similar or syntactically similar words are close vectors with high similarity29.

We will be leveraging both nltk and spacy which usually use the Penn Treebank notation for POS tagging. Parts of speech (POS) are specific lexical categories to which words are assigned, based on their syntactic context and role. We will first combine the news headline and the news article text together to form a document for each piece of news. Thus, we can see the specific HTML tags which contain the textual content of each news article in the landing page mentioned above.

Leave a Reply

Your email address will not be published. Required fields are marked *